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Recap: Depth-First Search (Recursive)

Recursive implementation implicitly replaces the todo stack with the call 

stack.

This is an exhaustive algorithm, because it visits every node and every edge 

in graph G

It runs in time O(n + m) if implemented using adjacency list

Algorithm DFS(G, current)

current.state:= “discovered”

for each u in neighbors(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(G, start)  // start is a vertex in G



Algorithm DFS(digraph G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(digraph G, start)  // start is a vertex in G

DFS in Directed Graph
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The algorithm for Directed Graphs is 

exactly the same

By the end we discover all the nodes in 

digraph G that are reachable from the 

source node start



The time of discovery and finishing time

● Unlike in BFS (with its removal 

from the front of a queue) the 

order in which we discover a new 

unprocessed vertex differs from 

the order in which we mark 

vertices as processed

● Imagine that we have a clock, 

and before we begin the clock is 

set to 1.

● The moment that we mark some 

node as processed, we also mark 

it with the current value of the 

clock, and we increment the clock 

value by 1 
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Definition

Let finishing time f(v) of node v be the 

value of clock variable at the moment 

that v was marked as processed by the 

DFS algorithm

In essence f(v) is the count of all the 

vertices processed before v



Example of computing finishing time
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● Let’s start DFS from an arbitrary 

vertex, say, vertex d

● We traverse the tree and collect 

all nodes reachable from d

d h e c

g1 f2 c3 e4 h5 d6

We finished with all the nodes reachable from d



Example of computing finishing time
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● We start another DFS from vertex 

a, say

● We traverse the tree and add two 

new nodes to the stack

a b

g1 f2 c3 e4 h5 d6 b7 a8



Example of computing finishing time
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g1 f2 c3 e4 h5 d6 b7 a8

We obtained some sort of an order on graph vertices, in essence saying 

that if f(v) > f(u) then u is processed first in the DFS

That means that there is a directed path from v to u

Finishing time for each node in G



● Topological sort is an ordering of vertices in a 

Directed Acyclic Graph [DAG] in which each node 

comes before all nodes to which it has outgoing 

edges.

● Each node is assigned a label t(v):

○ t(v) is a unique order of node v from 1 to n

○ If there is a directed edge u->v, then t(u)<t(v)

Consider the course prerequisite structure at universities. A 

directed edge (v,w) indicates that course v must be completed 

before course w. Topological ordering in this case is the 

sequence which does not violate the prerequisite requirement.

● Topological sort is not possible if the graph has a 

cycle, since for two vertices u and v on the cycle, it 

is not possible that t(u)<t(v) and at the same time 

t(v)<t(u).

Topological Order
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Topological Order is not 

unique



Computing Topological Order

● The topological order is exactly opposite to the finishing time

● The finishing time of the vertex indicates that all nodes reachable from it have 

been processed, that means it is not a prerequisite for any one of them

● Thus the node without prerequisites (with the smallest t(v)) finishes last (has 

the largest f(v))

● This gives an algorithm for computing topological order using DFS



Topological Sort via DFS
global sorted_nodes:= empty linked list

global clock: = 1 

Algorithm DFS(DAG G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

current.finishing_time: = clock

clock: = clock + 1

sorted_nodes.add_in_front(current)

Algorithm DFS_loop(DAG G)

mark all nodes of G as “undiscovered”

for each u in vertices of G

if u.state = “undiscovered”

DFS(DAG G, u)



Example
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current_vertex Recursion stack: d

Sorted list

clock = 1

Finishing time



Example
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Finishing time



Example
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current_vertex Recursion stack: d f g

Sorted list

clock = 1

Finishing time



Example
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current_vertex g Recursion stack: d f

Sorted list

clock = 1

Finishing time



Example
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current_vertex g Recursion stack: d f

Sorted list g

clock = 2

Finishing time 1
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current_vertex f Recursion stack: d

Sorted list g

clock = 2

Finishing time 1



Example
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current_vertex f Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1



Example
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current_vertex Recursion stack: d h

Sorted list f g

clock = 3

Finishing time 2 1



Example
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current_vertex h Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1



Example

b

hc

a

d

g

f

current_vertex h Recursion stack: d

Sorted list h f g

clock = 4

Finishing time 3 2 1



Example
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current_vertex d Recursion stack:

Sorted list h f g

clock = 4

Finishing time 3 2 1



Example
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current_vertex d Recursion stack:

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1
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current_vertex Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex Recursion stack: a b

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex b Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1



Example
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current_vertex Recursion stack: a c

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1
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current_vertex c Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1



Example
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current_vertex Recursion stack: a

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1



Example
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current_vertex a Recursion stack:

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1
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current_vertex a Recursion stack:

Sorted list a c b d h f g

Finishing time 7 6 5 4 3 2 1



Question to think about

● How the same DFS loop can be used to determine if the graph is 

cycle-free?


