Exhaustive Graph traversals. Topological Sorting with DFS

Lecture 03.04 By Marina Barsky

Recap: Depth-First Search (Recursive)

Recursive implementation implicitly replaces the todo stack with the call stack.

```
Algorithm DFS (G, current)
    current.state:= "discovered"
    for each u in neighbors (current)
        if u.state = "undiscovered" then
           DFS(G, u)
    current.state:="processed"
for each u in vertices of G
    u.state:= "undiscovered"
DFS(G, start) // start is a vertex in G
```

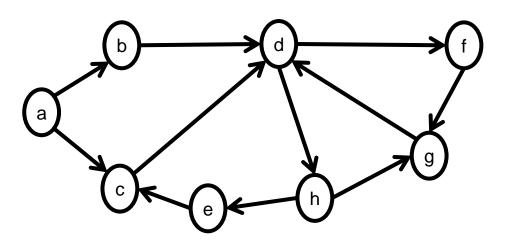
This is an exhaustive algorithm, because it visits every node and every edge in graph G

It runs in time O(n + m) if implemented using adjacency list

DFS in Directed Graph

The algorithm for Directed Graphs is exactly the same

By the end we discover all the nodes in digraph G that are reachable from the source node *start*

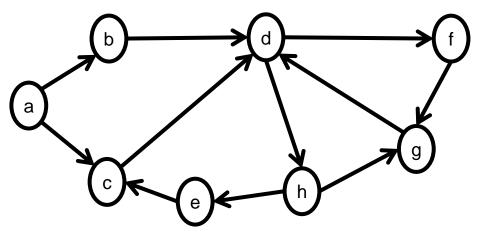


```
Algorithm DFS(digraph G, current)
    current.state:= "discovered"
    for each u in out_arcs(current)
        if u.state = "undiscovered" then
        DFS(G, u)
    current.state:="processed"

for each u in vertices of G
        u.state:= "undiscovered"
DFS(digraph G, start) // start is a vertex in G
```

The time of discovery and finishing time

- Unlike in BFS (with its removal from the front of a queue) the order in which we discover a new unprocessed vertex differs from the order in which we mark vertices as processed
- Imagine that we have a clock, and before we begin the clock is set to 1.
- The moment that we mark some node as processed, we also mark it with the current value of the clock, and we increment the clock value by 1



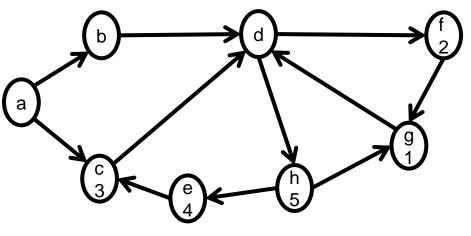
Definition

Let *finishing time f(v)* of node v be the value of *clock* variable at the moment that v was marked as processed by the DFS algorithm

In essence f(v) is the count of all the vertices processed before v

Example of computing finishing time

- Let's start DFS from an arbitrary vertex, say, vertex d
- We traverse the tree and collect all nodes reachable from d



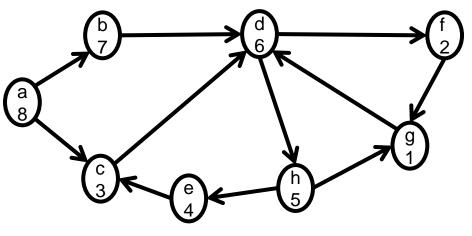
d	h	е	С			

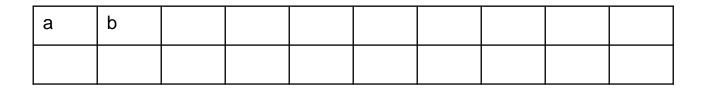
g1	f2	c3	e4	h5	d6		

We finished with all the nodes reachable from d

Example of computing finishing time

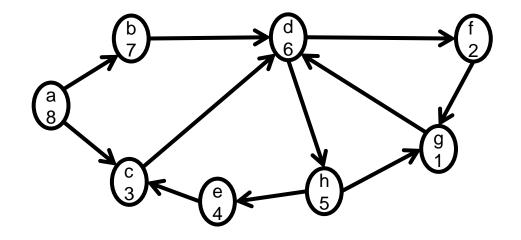
- We start another DFS from vertex a, say
- We traverse the tree and add two new nodes to the stack





g1	f2	c3	e4	h5	d6	b7	a8	

Example of computing finishing time



g1	f2	c3	e4	h5	d6	b7	a8	

Finishing time for each node in G

We obtained some sort of an order on graph vertices, in essence saying that if f(v) > f(u) then u is processed first in the DFS

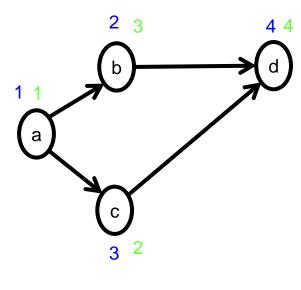
That means that there is a directed path from v to u

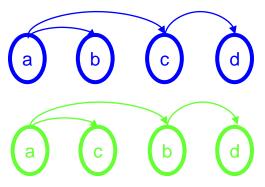
Topological Order

- Topological sort is an ordering of vertices in a Directed Acyclic Graph [DAG] in which each node comes before all nodes to which it has outgoing edges.
- Each node is assigned a label t(v):
 - \circ t(v) is a unique order of node v from 1 to n
 - If there is a directed edge $u \rightarrow v$, then t(u) < t(v)

Consider the course prerequisite structure at universities. A directed edge (v,w) indicates that course v must be completed before course w. Topological ordering in this case is the sequence which does not violate the prerequisite requirement.

Topological sort is not possible if the graph has a cycle, since for two vertices u and v on the cycle, it is not possible that t(u)<t(v) and at the same time t(v)<t(u).





Topological Order is not unique

Computing Topological Order

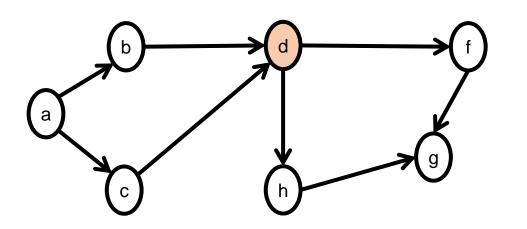
- The topological order is exactly opposite to the finishing time
- The finishing time of the vertex indicates that all nodes reachable from it have been processed, that means it is not a prerequisite for any one of them
- Thus the node without prerequisites (with the smallest t(v)) finishes last (has the largest f(v))
- This gives an algorithm for computing topological order using DFS

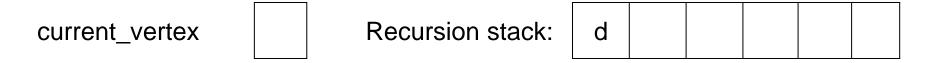
Topological Sort via DFS

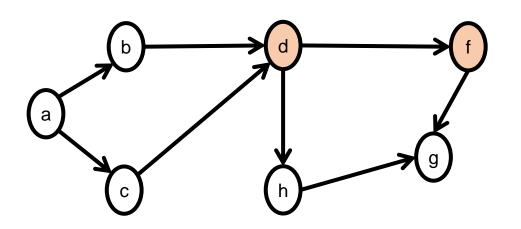
```
global sorted_nodes:= empty linked list
global clock: = 1
```

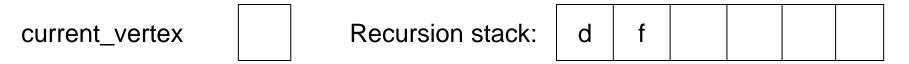
```
Algorithm DFS(DAG G, current)
    current.state:= "discovered"
    for each u in out_arcs(current)
        if u.state = "undiscovered" then
            DFS(G, u)
    current.state:="processed"
    current.finishing_time: = clock
    clock: = clock + 1
    sorted_nodes.add_in_front(current)
```

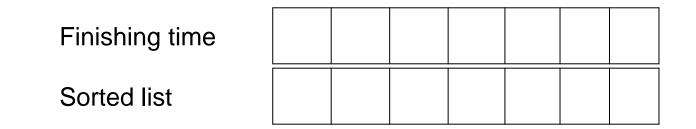
```
Algorithm DFS_loop(DAG G)
mark all nodes of G as "undiscovered"
for each u in vertices of G
if u.state = "undiscovered"
DFS(DAG G, u)
```

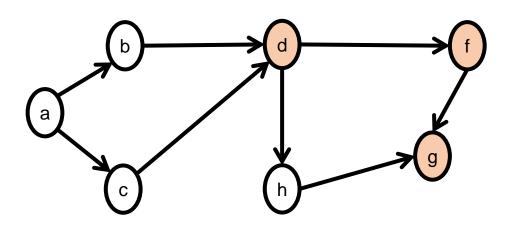




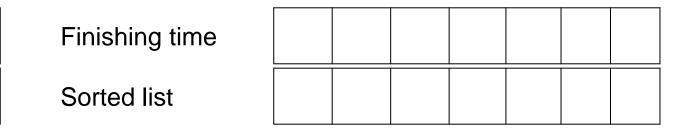


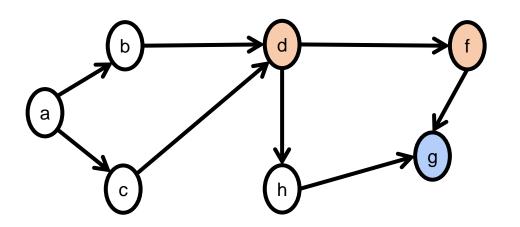


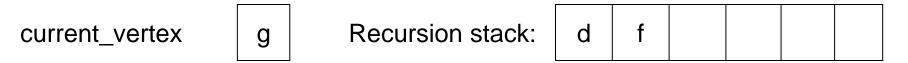


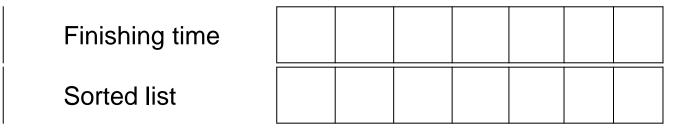


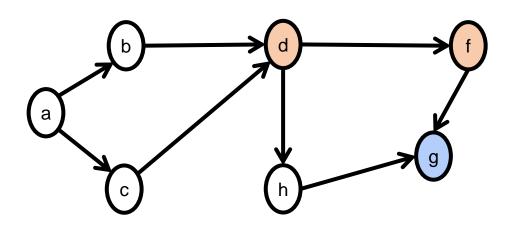
current_vertex	Recursion stack:	d	f	g				
----------------	------------------	---	---	---	--	--	--	--









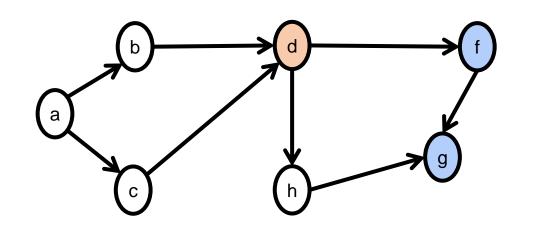


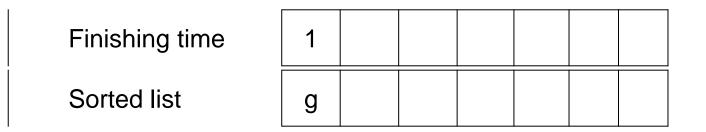
clock = 2

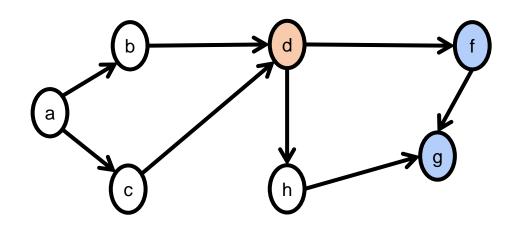


 Finishing time
 1

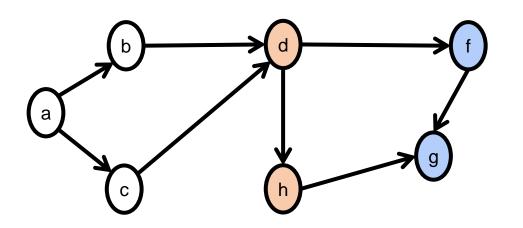
 Sorted list
 g

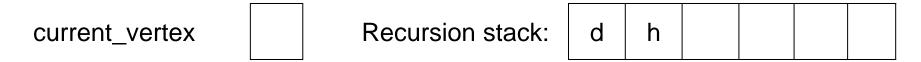




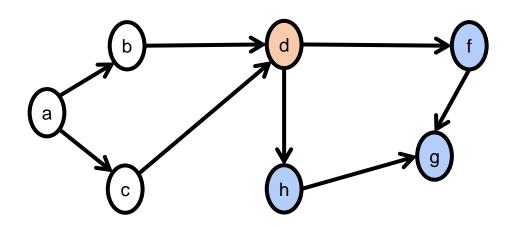


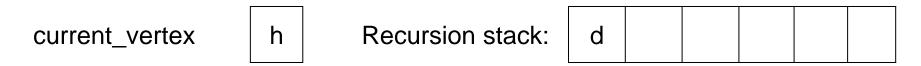
Finishing time	2	1			
Sorted list	f	g			



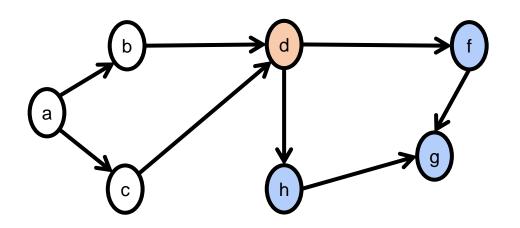


Finishing time	2	1			
Sorted list	f	g			

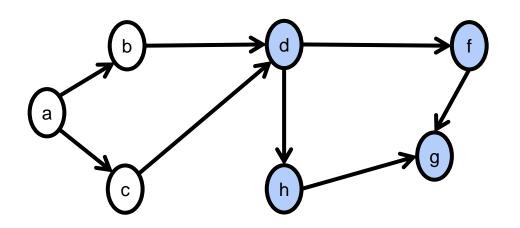


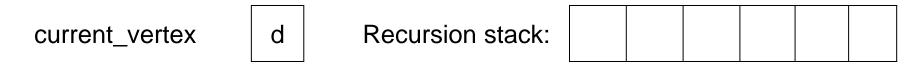


Finishing time	2	1			
Sorted list	f	g			

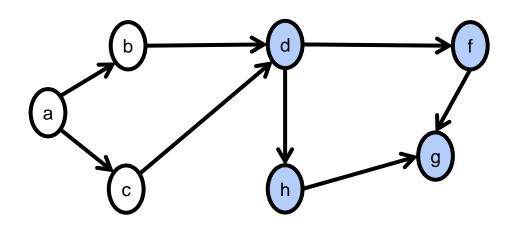


Finishing time	3	2	1		
Sorted list	h	f	g		

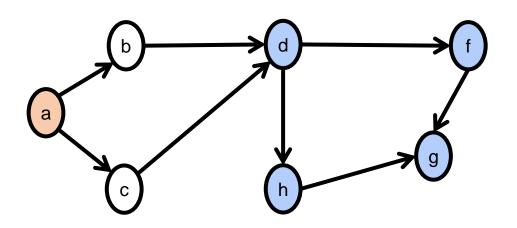




Finishing time	3	2	1		
Sorted list	h	f	g		

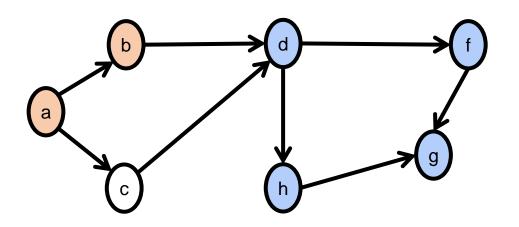


Finishing time	4	3	2	1		
Sorted list	d	h	f	g		

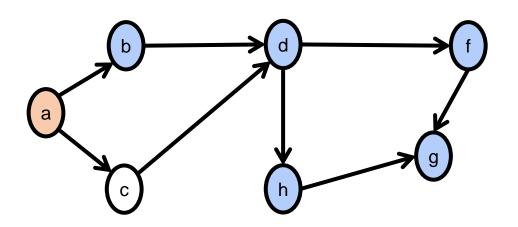


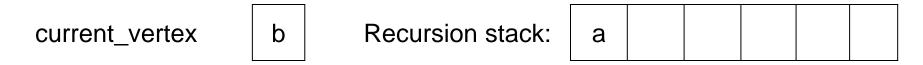
a	
---	--

Finishing time	4	3	2	1		
Sorted list	d	h	f	g		

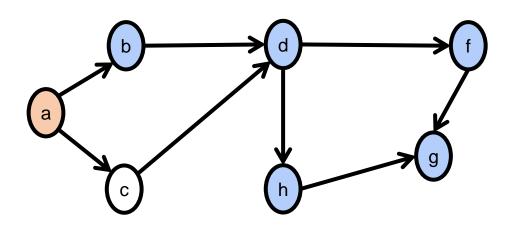


Finishing time	4	3	2	1		
Sorted list	d	h	f	g		

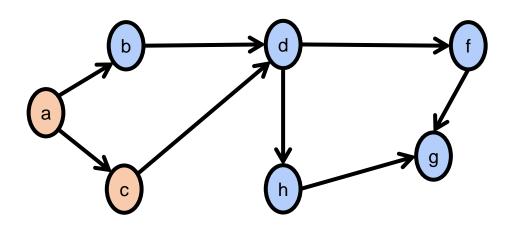




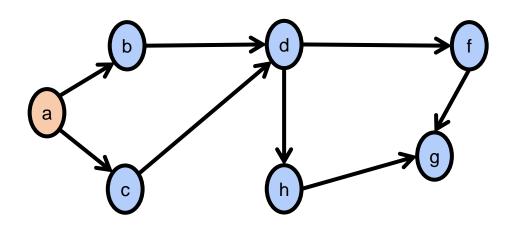
Finishing time	4	3	2	1		
Sorted list	d	h	f	g		



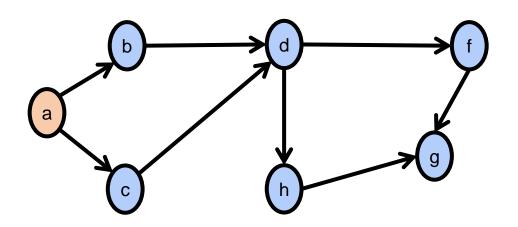
Finishing time	5	4	3	2	1	
Sorted list	b	d	h	f	g	



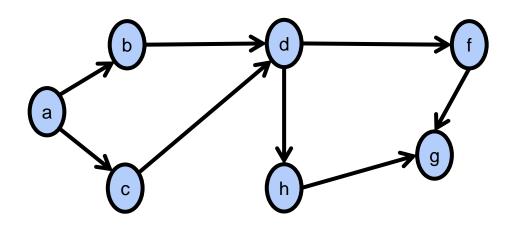
Finishing time	5	4	3	2	1	
Sorted list	b	d	h	f	g	

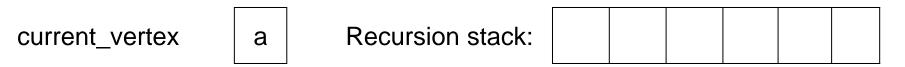


Finishing time	5	4	3	2	1	
Sorted list	b	d	h	f	g	

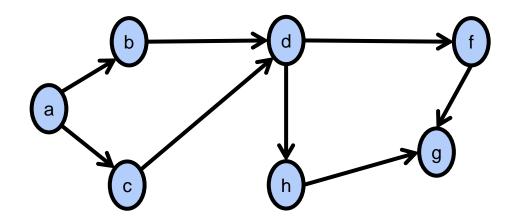


Finishing time	6	5	4	3	2	1	
Sorted list	С	b	d	h	f	g	





Finishing time	6	5	4	3	2	1	
Sorted list	С	b	d	h	f	g	



Sorted list	а	С	b	d	h	f	g
Finishing time	7	6	5	4	3	2	1

Question to think about

• How the same DFS loop can be used to determine if the graph is cycle-free?