
Exhaustive Graph traversals.

Topological Sorting with DFS
Lecture 03.04

By Marina Barsky

Recap: Depth-First Search (Recursive)

Recursive implementation implicitly replaces the todo stack with the call

stack.

This is an exhaustive algorithm, because it visits every node and every edge

in graph G

It runs in time O(n + m) if implemented using adjacency list

Algorithm DFS(G, current)

current.state:= “discovered”

for each u in neighbors(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(G, start) // start is a vertex in G

Algorithm DFS(digraph G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(digraph G, start) // start is a vertex in G

DFS in Directed Graph
b

h
c

e

a

d

g

f

The algorithm for Directed Graphs is

exactly the same

By the end we discover all the nodes in

digraph G that are reachable from the

source node start

The time of discovery and finishing time

● Unlike in BFS (with its removal

from the front of a queue) the

order in which we discover a new

unprocessed vertex differs from

the order in which we mark

vertices as processed

● Imagine that we have a clock,

and before we begin the clock is

set to 1.

● The moment that we mark some

node as processed, we also mark

it with the current value of the

clock, and we increment the clock

value by 1

b

h
c

e

a

d

g

f

Definition

Let finishing time f(v) of node v be the

value of clock variable at the moment

that v was marked as processed by the

DFS algorithm

In essence f(v) is the count of all the

vertices processed before v

Example of computing finishing time

b

h

5

c

3 e

4

a

d

g

1

f

2

● Let’s start DFS from an arbitrary

vertex, say, vertex d

● We traverse the tree and collect

all nodes reachable from d

d h e c

g1 f2 c3 e4 h5 d6

We finished with all the nodes reachable from d

Example of computing finishing time
b

7

h

5

c

3 e

4

a

8

d

6

g

1

f

2

● We start another DFS from vertex

a, say

● We traverse the tree and add two

new nodes to the stack

a b

g1 f2 c3 e4 h5 d6 b7 a8

Example of computing finishing time

b

7

h

5

c

3 e

4

a

8

d

6

g

1

f

2

g1 f2 c3 e4 h5 d6 b7 a8

We obtained some sort of an order on graph vertices, in essence saying

that if f(v) > f(u) then u is processed first in the DFS

That means that there is a directed path from v to u

Finishing time for each node in G

● Topological sort is an ordering of vertices in a

Directed Acyclic Graph [DAG] in which each node

comes before all nodes to which it has outgoing

edges.

● Each node is assigned a label t(v):

○ t(v) is a unique order of node v from 1 to n

○ If there is a directed edge u->v, then t(u)<t(v)

Consider the course prerequisite structure at universities. A

directed edge (v,w) indicates that course v must be completed

before course w. Topological ordering in this case is the

sequence which does not violate the prerequisite requirement.

● Topological sort is not possible if the graph has a

cycle, since for two vertices u and v on the cycle, it

is not possible that t(u)<t(v) and at the same time

t(v)<t(u).

Topological Order

b

c

a

d

a b c d

a c b d

1

2

3

4

1

2

3 4

Topological Order is not

unique

Computing Topological Order

● The topological order is exactly opposite to the finishing time

● The finishing time of the vertex indicates that all nodes reachable from it have

been processed, that means it is not a prerequisite for any one of them

● Thus the node without prerequisites (with the smallest t(v)) finishes last (has

the largest f(v))

● This gives an algorithm for computing topological order using DFS

Topological Sort via DFS
global sorted_nodes:= empty linked list

global clock: = 1

Algorithm DFS(DAG G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

current.finishing_time: = clock

clock: = clock + 1

sorted_nodes.add_in_front(current)

Algorithm DFS_loop(DAG G)

mark all nodes of G as “undiscovered”

for each u in vertices of G

if u.state = “undiscovered”

DFS(DAG G, u)

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d f

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d f g

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex g Recursion stack: d f

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex g Recursion stack: d f

Sorted list g

clock = 2

Finishing time 1

Example

b

hc

a

d

g

f

current_vertex f Recursion stack: d

Sorted list g

clock = 2

Finishing time 1

Example

b

hc

a

d

g

f

current_vertex f Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d h

Sorted list f g

clock = 3

Finishing time 2 1

Example

b

hc

a

d

g

f

current_vertex h Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1

Example

b

hc

a

d

g

f

current_vertex h Recursion stack: d

Sorted list h f g

clock = 4

Finishing time 3 2 1

Example

b

hc

a

d

g

f

current_vertex d Recursion stack:

Sorted list h f g

clock = 4

Finishing time 3 2 1

Example

b

hc

a

d

g

f

current_vertex d Recursion stack:

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a b

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex b Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a c

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex c Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex a Recursion stack:

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex a Recursion stack:

Sorted list a c b d h f g

Finishing time 7 6 5 4 3 2 1

Question to think about

● How the same DFS loop can be used to determine if the graph is

cycle-free?

